|
Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$
U. R. Olimova, U. A. Rozikovbca a V. I. Romanovskiy Institute of Mathematics,
University st. 9, Tashkent, 100174 Uzbekistan
b Karshi State University,
Kuchabag st. 17, Karshi, 180119 Uzbekistan
c National University of Uzbekistan,
Universitet st. 4, Tashkent, 100174 Uzbekistan
Аннотация:
We investigate discrete-time dynamical systems generated by an infinite-dimensional nonlinear operator that maps the Banach space $l_1$ to itself. It is demonstrated that this operator
possesses up to seven fixed points. By leveraging the specific form of our operator, we illustrate
that analyzing the operator can be simplified to a two-dimensional approach. Subsequently, we
provide a detailed description of all fixed points, invariant sets for the two-dimensional operator
and determine the set of limit points for its trajectories. These results are then applied to find
the set of limit points for trajectories generated by the infinite-dimensional operator.
Ключевые слова:
infinite-dimensional operator, trajectory, fixed point, limit point, partial order
Поступила в редакцию: 24.02.2024 Принята в печать: 07.07.2024
Образец цитирования:
U. R. Olimov, U. A. Rozikov, “Dynamical Systems of an Infinite-Dimensional Nonlinear Operator on the Banach Space $l_1$”, Rus. J. Nonlin. Dyn., 20:4 (2024), 685–703
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd917 https://www.mathnet.ru/rus/nd/v20/i4/p685
|
| Статистика просмотров: |
| Страница аннотации: | 161 | | PDF полного текста: | 102 | | Список литературы: | 33 |
|