Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2025, том 21, номер 1, страницы 103–116
DOI: https://doi.org/10.20537/nd250301
(Mi nd942)
 

Mathematical problems of nonlinearity

On the Centralizer and Conjugacy of Pseudo-Anosov Homeomorphisms

E. E. Chilina

HSE University, ul. Bolshaya Pecherckaya 25/12, Nizhny Novgorod, 603155 Russia
Список литературы:
Аннотация: The present paper is devoted to the study of the dynamics of mappings commuting with pseudo-Anosov surface homeomorphisms. It is proved that the centralizer of a pseudo-Anosov homeomorphism $P$ consists of pairwise nonhomotopic mappings, each of which is a composition of a power of the pseudo-Anosov mapping and a periodic homeomorphism. For periodic mappings commuting with $P$, it is proved that their number is finite and does not exceed the number $N_P^{}$, which is equal to the minimum among the number of all separatrices related to saddles of the same valency of $P$-invariant foliations. For a periodic homeomorphism $J$ lying in the centralizer of $P$, it is also shown that, if the period of a point is equal to half the period of the homeomorphism $J$, then this point is located in the complement of the separatrices of saddle singularities. If the period of the point is less than half the period of $J$, then this point is contained in the set of saddle singularities. In addition, it is proved that there exists a monomorphism from the group of periodic maps commuting with a pseudo-Anosov homeomorphism to the symmetric group of degree $N_P^{}$. Each permutation from the image of the monomorphism is represented as a product of disjoint cycles of the same length. Furthermore, it is deduced that a pseudo-Anosov homeomorphism with the trivial centralizer exists on each orientable closed surface of genus greater than $2$. As an application of the results related to the structure of the centralizer of pseudo-Anosov homeomorphisms to their topological classification, it is proved that there are no pairwise distinct homotopic conjugating mappings for topologically conjugated pseudo-Anosov homeomorphisms.
Ключевые слова: pseudo-Anosov homeomorphism, topological conjugacy, centralizer
Финансовая поддержка Номер гранта
Программа фундаментальных исследований НИУ ВШЭ
This article is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).
Поступила в редакцию: 07.10.2024
Принята в печать: 06.03.2025
Тип публикации: Статья
MSC: 37B99, 37E30
Язык публикации: английский
Образец цитирования: E. E. Chilina, “On the Centralizer and Conjugacy of Pseudo-Anosov Homeomorphisms”, Rus. J. Nonlin. Dyn., 21:1 (2025), 103–116
Цитирование в формате AMSBIB
\RBibitem{Chi25}
\by E. E. Chilina
\paper On the Centralizer and Conjugacy of Pseudo-Anosov Homeomorphisms
\jour Rus. J. Nonlin. Dyn.
\yr 2025
\vol 21
\issue 1
\pages 103--116
\mathnet{http://mi.mathnet.ru/nd942}
\crossref{https://doi.org/10.20537/nd250301}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd942
  • https://www.mathnet.ru/rus/nd/v21/i1/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025