Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2025, том 21, номер 2, страницы 173–184
DOI: https://doi.org/10.20537/nd250201
(Mi nd946)
 

Nonlinear physics and mechanics

Impact of Nonlinear Diffusion and Heterogeneity on Competing Populations Dynamics

A. V. Budyanskya, V. G. Tsybulinb

a Don State Technical University, pl. Gagarina 1, Rostov-on-Don, 344009 Russia
b Southern Federal University, ul. Milchakova 8a, Rostov-on-Don, 344090 Russia
Список литературы:
Аннотация: The impact of migration effects on the formation of population distributions is studied. We consider the model of interplay between two species (resident and invader), and apply the theory of cosymmetry to classify different population scenarios. The system of reaction – diffusion – advection equations is used to describe the nonlinear diffusion and taxis because of nonuniform distribution of the resource. The logistic law of growth is taken to model local interaction between species. We consider a one-dimensional habitat with no-flux boundary conditions. Finite-difference discretization with a staggered grid is used for the spatial coordinate and Runge – Kutta integrator to solve the resulting system of ordinary differential equations of large order. A computer experiment is applied to analyze the dynamics of populations and migration fluxes. We numerically build the maps of migration parameters for description scenarios of invasion and competition. It is found that nonlinear diffusion has an influence on invasion because intraspecific taxis compensates nonoptimal migration to resource. Negative coefficients of intraspecific taxis stimulate diffusion for both species and prevent excessive concentration of populations. This aids the coexistence of species as stationary distributions. Different coefficient signs imply the implementation of corresponding stable semipositive solutions. Direct numerical experiments show that the coexistence of species occurs at large positive coefficients of intraspecific taxis. The dependence of the scenario on the initial distributions is established.
Ключевые слова: population dynamics, nonlinear PDEs, diffusion, taxis, invasion, competition
Финансовая поддержка Номер гранта
Российский научный фонд 23-21-00221
This work was supported by the Russian Science Foundation (23-21-00221) and Southern Federal University.
Поступила в редакцию: 15.02.2024
Принята в печать: 13.12.2024
Тип публикации: Статья
MSC: 37N25
Язык публикации: английский
Образец цитирования: A. V. Budyansky, V. G. Tsybulin, “Impact of Nonlinear Diffusion and Heterogeneity on Competing Populations Dynamics”, Rus. J. Nonlin. Dyn., 21:2 (2025), 173–184
Цитирование в формате AMSBIB
\RBibitem{BudTsy25}
\by A. V. Budyansky, V. G. Tsybulin
\paper Impact of Nonlinear Diffusion and Heterogeneity on Competing Populations Dynamics
\jour Rus. J. Nonlin. Dyn.
\yr 2025
\vol 21
\issue 2
\pages 173--184
\mathnet{http://mi.mathnet.ru/nd946}
\crossref{https://doi.org/10.20537/nd250201}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd946
  • https://www.mathnet.ru/rus/nd/v21/i2/p173
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025