Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2025, том 21, номер 2, страницы 233–248
DOI: https://doi.org/10.20537/nd241106
(Mi nd949)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Mathematical problems of nonlinearity

The Holomorphic Regularization Method of the Tikhonov System of Differential Equations for Mathematical Modeling of Wave Solid-State Gyroscope Dynamics

D. A. Maslov

National Research University “MPEI”, ul. Krasnokazarmennaya 14, Moscow, 111250 Russia
Список литературы:
Аннотация: This paper develops the holomorphic regularization method of the Cauchy problem for a special type of Tikhonov system that arises in the mathematical modeling of wave solid- state gyroscope dynamics. The Tikhonov system is a system of differential equations a part of which is singularly perturbed. Unlike other asymptotic methods giving approximations in the form of asymptotically converging series, the holomorphic regularization method allows one to obtain solutions of nonlinear singularly perturbed problems in the form of series in powers of a small parameter converging in the usual sense. Also, as a result of applying the holomorphic regularization method, merged formulas for an approximate solution are deduced both in the boundary layer and outside it. These formulas allow a qualitative analysis of the approximate solution on the entire time interval including the boundary layer.
This paper consists of two sections. In Section 1, the holomorphic regularization method of the Cauchy problem for a special type of Tikhonov system is developed. The special type of Tikhonov system means the following: singularly perturbed equations are linear in the variables included in them with derivatives, the matrix of the singularly perturbed part of the system is diagonal, the remaining equations have separate linear and nonlinear parts. An algorithm for deriving an approximate solution to the Cauchy problem for the Tikhonov system of special type by using the holomorphic regularization method is presented. In Section 2, the mathematical model describing in interconnected form the mechanical oscillations of the gyroscope resonator and the electrical processes in the oscillation control circuit is considered. The algorithm for deriving an approximate solution proposed in Section 1 is used. Formulas for an approximate solution taking into account the structure of the Tikhonov system are deduced.
Ключевые слова: Tikhonov system of differential equations, singular perturbation, nonlinearity, holomorphic regularization method, mathematical model, wave solid-state gyroscope dynamics
Финансовая поддержка Номер гранта
Российский научный фонд 23-21-00546
The work was supported by the grant of the Russian Science Foundation (project No. 23-21-00546).
Поступила в редакцию: 12.08.2024
Принята в печать: 15.11.2024
Тип публикации: Статья
MSC: 34E05, 34E15
Язык публикации: английский
Образец цитирования: D. A. Maslov, “The Holomorphic Regularization Method of the Tikhonov System of Differential Equations for Mathematical Modeling of Wave Solid-State Gyroscope Dynamics”, Rus. J. Nonlin. Dyn., 21:2 (2025), 233–248
Цитирование в формате AMSBIB
\RBibitem{Mas25}
\by D. A. Maslov
\paper The Holomorphic Regularization Method of the Tikhonov System of Differential Equations for Mathematical Modeling of Wave Solid-State Gyroscope Dynamics
\jour Rus. J. Nonlin. Dyn.
\yr 2025
\vol 21
\issue 2
\pages 233--248
\mathnet{http://mi.mathnet.ru/nd949}
\crossref{https://doi.org/10.20537/nd241106}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd949
  • https://www.mathnet.ru/rus/nd/v21/i2/p233
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025