Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2025, том 21, номер 2, страницы 249–258
DOI: https://doi.org/10.20537/nd241205
(Mi nd950)
 

Mathematical problems of nonlinearity

An Approximate Analytical Solution for a Class of Fourth-Order Nonlinear Differential Equations in the Domain of Analyticity

M. V. Gasanov

Moscow State University of Civil Engineering, Yaroslavskoe sh. 26, Moscow, 129337 Russia
Список литературы:
Аннотация: This paper considers a nonlinear fourth-order ordinary differential equation. The study of this class of equations is conducted using an analytical approximation method based on dividing the solution domain into two parts: the region of analyticity and the vicinity of a movable singu- lar point. This work focuses on investigating the equation in the region of analyticity and solving two problems. The first problem is a classical problem in the theory of differential equations: proving the theorem of existence and uniqueness of a solution in the region of analyticity. The structure of the solution in this region takes the form of a power series. To transition from for- mal series to series converging in a neighborhood of the initial conditions, a modification of the majorant method is used, which is applied in the Cauchy – Kovalevskaya theorem. This method allows determining the domain of validity of the theorem. Within this domain, error estimates for the analytical approximate solution are obtained, enabling the solution to be found with any predefined accuracy. When leaving the domain of the theorem’s validity, analytical continuation is required. To do this, it is necessary to solve the second task of the study: to study the effect of perturbation of the initial data on the structure of the analytical approximate solution.
Ключевые слова: approximate analytical solution, Cauchy problem, nonlinear ODE, majorant method
Поступила в редакцию: 09.10.2024
Принята в печать: 19.11.2024
Тип публикации: Статья
MSC: 34G20, 34A05, 34A25
Язык публикации: английский
Образец цитирования: M. V. Gasanov, “An Approximate Analytical Solution for a Class of Fourth-Order Nonlinear Differential Equations in the Domain of Analyticity”, Rus. J. Nonlin. Dyn., 21:2 (2025), 249–258
Цитирование в формате AMSBIB
\RBibitem{Gas25}
\by M. V. Gasanov
\paper An Approximate Analytical Solution for a Class of Fourth-Order Nonlinear Differential Equations in the Domain of Analyticity
\jour Rus. J. Nonlin. Dyn.
\yr 2025
\vol 21
\issue 2
\pages 249--258
\mathnet{http://mi.mathnet.ru/nd950}
\crossref{https://doi.org/10.20537/nd241205}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd950
  • https://www.mathnet.ru/rus/nd/v21/i2/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025