|
Проблемы анализа — Issues of Analysis, 2022, том 11(29), выпуск 3, страницы 91–108 DOI: https://doi.org/10.15393/j3.art.2022.11770
(Mi pa362)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Applications of the fractional difference operator for studying Euler statistical convergence of sequences of fuzzy real numbers and associated Korovkin-type theorems
Kuldip Raja, Kavita Sainia, M. Mursaleenbc a School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India
b Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan
c Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
DOI:
https://doi.org/10.15393/j3.art.2022.11770
Аннотация:
The present work focuses on the statistical Euler summability, Euler statistical convergence, and Euler summability of sequences of fuzzy real numbers via the generalized fractional difference operator. We make an effort to establish some relations between different sorts of Euler convergence. Further, we discuss the fuzzy continuity and demonstrate a fuzzy Korovkin-type approximation theorem. Finally, we study fuzzy rate of the convergence of approximating fuzzy positive linear operators through the modulus of continuity.
Ключевые слова:
Euler mean, sequences of fuzzy real numbers, statistical convergence, rate of convergence, approximation theorem.
Поступила в редакцию: 26.04.2022 Исправленный вариант: 20.09.2022 Принята в печать: 23.09.2022
Образец цитирования:
Kuldip Raj, Kavita Saini, M. Mursaleen, “Applications of the fractional difference operator for studying Euler statistical convergence of sequences of fuzzy real numbers and associated Korovkin-type theorems”, Пробл. анал. Issues Anal., 11(29):3 (2022), 91–108
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa362 https://www.mathnet.ru/rus/pa/v29/i3/p91
|
|