|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight
R. Akgün Balikesir University,
Faculty of Arts and Sciences, Department of Mathematics,
Cagis Yerleskesi, Altieylul, 10145, Balikesir, Türkiye
Аннотация:
Using a transference result, several inequalities of approximation by entire functions of exponential type in $\mathcal{C}(\mathbf{R})$, the class of bounded uniformly continuous functions defined on $\mathbf{R}:=\left(-\infty, +\infty \right)$, are extended to the Lebesgue spaces $L^{p}\left( \mathbf{\varrho }dx\right) $ $1\leq p<\infty $ with Muckenhoupt weight $\mathbf{\varrho }$. This gives us a different proof of Jackson type direct theorems and Bernstein-Timan type inverse estimates in $L^{p}\left( \mathbf{\varrho }dx\right) $. Results also cover the case $p=1$.
Ключевые слова:
Lebesgue spaces, Muckenhoupt weight, entire functions of exponential type, one-sided Steklov operator, best approximation, direct theorem, inverse theorem, modulus of smoothness, Marchaud-type inequality, K-functional.
Поступила в редакцию: 29.08.2022 Исправленный вариант: 09.12.2022 Принята в печать: 16.12.2022
Образец цитирования:
R. Akgün, “Exponential approximation of functions in Lebesgue spaces with Muckenhoupt weight”, Пробл. анал. Issues Anal., 12(30):1 (2023), 3–24
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa365 https://www.mathnet.ru/rus/pa/v30/i1/p3
|
|