|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Characterization of polynomials via a raising operator
J. Souissi Faculty of Sciences of Gabes, Department of Mathematics, Gabes University, Street Erriadh 6072 Gabes, Tunisia
Аннотация:
This paper investigates a first-order linear differential operator $\mathcal{J}_\xi$, where $\xi=(\xi_1, \xi_2) \in \mathbb{C}^2\setminus{(0, 0)}$, and $D:=\frac{d}{dx}$. The operator is defined as $\mathcal{J}_{\xi}:=x(xD+\mathbb{I})+\xi_1\mathbb{I}+\xi_2 D$, with $\mathbb{I}$ representing the identity on the space of polynomials with complex coefficients. The focus is on exploring the $\mathcal{J}_\xi$-classical orthogonal polynomials and analyzing properties of the resulting sequences. This work contributes to the understanding of these polynomials and their characteristics.
Ключевые слова:
orthogonal polynomials, СЃlassical polynomials, second-order differential equation, raising operator.
Поступила в редакцию: 18.09.2023 Принята в печать: 12.11.2023
Образец цитирования:
J. Souissi, “Characterization of polynomials via a raising operator”, Пробл. анал. Issues Anal., 13(31):1 (2024), 71–81
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa392 https://www.mathnet.ru/rus/pa/v31/i1/p71
|
|