|
Проблемы анализа — Issues of Analysis, 2024, том 13(31), выпуск 1, страницы 100–123 DOI: https://doi.org/10.15393/j3.art.2023.15310
(Mi pa394)
|
|
|
|
Littlewood–Paley $g_{\lambda}^*$-function characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type
X. Yan Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng 475004, The People's Republic of China
DOI:
https://doi.org/10.15393/j3.art.2023.15310
Аннотация:
Let $({\mathcal X}, d, \mu)$ be a space of homogeneous type, in the sense of Coifman and Weiss, and $\varphi\colon\ \mathcal{X}\times[0, \infty)\rightarrow[0, \infty)$ satisfy that, for almost every $x\in\mathcal{X}$, $\varphi(x, \cdot)$ is an Orlicz function and that $\varphi(\cdot, t)$ is a Muckenhoupt weight uniformly in $t\in[0, \infty)$. In this article, by using the aperture estimate of Littlewood–Paley auxiliary functions on the Musielak–Orlicz space $L^{\varphi}(\mathcal{X})$, we obtain the Littlewood–Paley $g_{\lambda}^*$-function characterization of Musielak–Orlicz Hardy space $H^{\varphi}(\mathcal{X})$. Particularly, the range of $\lambda$ coincides with the best-known one.
Ключевые слова:
space of homogeneous type, Musielak–Orlicz Hardy space, Littlewood–Paley auxiliary function, $g_{\lambda}^*$-function.
Поступила в редакцию: 24.04.2023 Исправленный вариант: 10.10.2023 Принята в печать: 03.11.2023
Образец цитирования:
X. Yan, “Littlewood–Paley $g_{\lambda}^*$-function characterizations of Musielak–Orlicz Hardy spaces on spaces of homogeneous type”, Пробл. анал. Issues Anal., 13(31):1 (2024), 100–123
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa394 https://www.mathnet.ru/rus/pa/v31/i1/p100
|
|