|
On solvability of some boundary-value problems for the non-local Poisson equation with fractional-order boundary operators
B. Kh. Turmetovab a Khoja Akhmet Yassawi International Kazakh-Turkish University 29 B. Sattarhanov ave., Turkistan 161200, Kazakhstan
b Alfraganus University, 2a Yukori Karakamish Str., Tashkent, 100190, Uzbekistan
Аннотация:
In this paper, a non-local analogue of the Laplace operator is introduced using involution-type mappings. For the corresponding non-local analogue of the Poisson equation in the unit ball, two types of boundary-value problems are considered. In the studied problems, the boundary conditions involve fractional-order operators with derivatives of the Hadamard type. The first problem generalizes the well-known Dirichlet, Neumann, and Robin problems for fractional-order boundary operators. The second problem is a generalization of periodic and antiperiodic boundary-value problems for circular domains. Theorems on the existence and uniqueness of solutions to the studied problems are proved. Exact conditions for solvability of the studied problems are found, and integral representations of the solutions are obtained.
Ключевые слова:
non-local equation, fractional derivative, Hadamard operator, periodic problem, Dirichlet problem, Neumann problem.
Поступила в редакцию: 22.08.2024 Исправленный вариант: 13.10.2024 Принята в печать: 13.10.2024
Образец цитирования:
B. Kh. Turmetov, “On solvability of some boundary-value problems for the non-local Poisson equation with fractional-order boundary operators”, Пробл. анал. Issues Anal., 13(31):3 (2024), 118–134
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/pa411 https://www.mathnet.ru/rus/pa/v31/i3/p118
|
|