Прикладная математика & Физика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ПМ&Ф:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Прикладная математика & Физика, 2021, том 53, выпуск 1, страницы 5–12
DOI: https://doi.org/10.52575/2687-0959-2021-53-1-5-12
(Mi pmf309)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

МАТЕМАТИКА

Колебания консольной балки

К. Б. Сабитовa, О. В. Фадееваb

a Стерлитамакский филиал Института стратегических исследований Республики Башкортостан
b Самарский государственный технический университет
Аннотация: В данной работе изучена начально-граничная задача для уравнения колебаний балки, один конец которой свободен, а другой заделан, т.е. для консольной балки. Решение поставленной задачи проведено методами спектрального анализа. Для спектральной задачи найдены собственные значения как корни трансцендентного уравнения и построена соответствующая система собственных функций. Показано, что построенная система собственных функций обладает свойствами ортогональности и полноты в пространстве L2. Единственность решения поставленной задачи доказана двумя способами. Первый способ основан на применении интеграла энергии, а второй – на полноте системы собственных функций. Решение данной начально-граничной задачи построено в виде суммы ряда по системе собственных функций соответствующей одномерной спектральной задачи. Найдены оценки коэффициентов этого ряда и системы собственных функций, на основании которых установлены достаточные условия на начальные функции, выполнение которых обеспечивает равномерную сходимость построенного ряда в классе регулярных решений уравнения колебаний балки. Опираясь на полученное решение данной задачи, установлена устойчивость ее решения в зависимости от начальных данных.
Ключевые слова: уравнение балки, единственность, ряд, существование, устойчивость.
Поступила в редакцию: 07.04.2021
Тип публикации: Статья
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/pmf309
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная математика & Физика
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025