Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар по современным проблемам комплексного анализа (Семинар Садуллаева)
20 декабря 2018 г. 12:00–13:00, г. Ташкент, Национальный университет Узбекистана, Математический факультет, аудитория А-304 (ул. Университетская, 4)
 


The entrance time for circle homeomorphisms with break points

J. J. Karimov

National University of Uzbekistan named after M. Ulugbek, Tashkent

Аннотация: We consider the circle homeomorphism $f\in {{C}^{2+\varepsilon }}({{S}^{1}}\backslash \{b\})$, $\varepsilon > 0$, with one break point $b$ and irrational rotation number $\rho ={{\rho }_{f}}=\frac{\sqrt{5}-1}{2}$. Let ${{q}_{n}}$ be the first return time. We fix arbitrary point ${{z}_{0}}\in {{S}^{1}}$. We denote by ${{J}_{n}}({{z}_{0}})$ the $n$-th renormalization interval of ${{z}_{0}}$. Let $\bar{E}_{n}^{(1)}(x)$ be the normalized entrance time function. The distribution function of random variable $\bar{E}_{n}^{(1)}(x)$ to Lebesgue measure $l$ denote by $\Phi _{n}^{(1)}(t)$. We prove that $\Phi _{n}^{(1)}(t)\to \Phi (t)$, $n\to \infty$ for all $t\in {{\mathbb{R}}^{1}}$ and $\Phi_{n}^{(1)}(t)$ is singular on $[0,1]$ w.r.t. Lebesgue measure $l$.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025