Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Международная конференция "Advances in Algebra and Applications"
22 июня 2022 г. 10:15–11:05, г. Минск
 


Formal Bott–Thurston cocycle and a part of formal Riemann–Roch theorem

D. V. Osipov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:485
Видеофайлы:109



Аннотация: The formal Bott–Thurston cocycle is a 2-cocycle on the group of continuous automorphisms of the ring of Laurent series over a ring with values in the group of invertible elements of this ring, where we consider the natural topology on the ring of Laurent series. This cocycle is a formal analog of the Bott–Thurston 2-cocycle on the group of orientation-preserving diffeomorphisms of the circle. We prove that the central extension given by the formal Bott–Thurston cocycle is equivalent to the 12-fold Baer sum of the determinantal central extension when the basic ring contains the field of rational numbers. As a consequence of this result we prove the part of new formal Riemann–Roch theorem for a ringed space over a scheme, where this ringed space is locally isomorphic to the sheaf of rings of Laurent series over the structure sheaf of this scheme.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2026