Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
25 февраля 2025 г. 16:15,  МФТИ, адм. корпус ауд. 322, Первомайская ул., 7, Долгопрудный
 


Обобщенный спектральный радиус. II — Гипотеза Лагариаса-Ванга о конечности

В. С. Козякин

Московский физико-технический институт (национальный исследовательский университет), Высшая школа современной математики

Аннотация: Будет продолжен обзор результатов по теории обобщенного спектрального радиуса наборов матриц $R(M)$. Исходно $R(M)$ определялся при помощи некоторой предельной процедуры. Однако во всех примерах, которые удалось просчитать в то время (более 30 лет назад), он достигался на некотором конечном шаге этой конструкции, что стимулировало Дж. Лагариаса и Я. Ванга в 1995 году высказать гипотезу об этом. Данное предположение вызвало определенный энтузиазм исследователей, поскольку давало надежду на разработку “конструктивных” приемов нахождения обобщенного спектрального радиуса. Увы, в 2002 году эта гипотеза была опровергнута (T. Bousch and J. Mairesse). Позднее, с небольшими интервалами появились другие варианты опровержения (V. Blondel, J. Theys and A. Vladimirov, 2003) и (V. Kozyakin, 2005). Все три варианта опровержения достаточно сложны технически и существенно используют методы теории меры, топологии, функционального анализа и теории чисел. Несмотря на опровержение, данная гипотеза стимулировала многие десятки исследований и в значительной мере повлияла на формирование современного облика данной тематики. Описанию одной из предложенных схем опровержения гипотезы о конечности как раз и будет посвящен доклад. Также будут обсуждаться вычислительные аспекты и некоторые алгоритмы нахождения обобщенного спектрального радиуса и построения соответствующей нормы Барабанова.
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025