Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
17 июня 2025 г. 16:15,  МФТИ, адм. корпус ауд. 322, Первомайская ул., 7, Долгопрудный
 


What do we actually know about the operator-norm convergent Trotter-Kato product formula?

V. A. Zagrebnov

Aix-Marseille Université

Аннотация: Since 1875 due to Sophus Lie it is known that for any pair of (noncommutative) finite square matrices $A$ and $B$ as generators one has the norm estimate $O(1/n)$ for convergence rate of the exponential product formula. In 1959 H.Trotter proved this formula in the strong operator topology on the Banach space for strongly continuous semigroups and unbounded generators $A$ and B. Further, in 1978 T. Kato extended this result (still in the strong operator topology) to the non-exponential product formulae. A breakthrough result in this direction was presented in the Dzh. L. Rogava theorem (1993). It says that on a separable Hilbert space the exponential Trotter product formula may converge in the operator-norm topology with convergence rate of the order $O(\ln{n}/\sqrt{n})$. This discovery initiated a number of papers addressed to the study of conditions on generators A and B aiming to optimise the rate of convergence in Rogava’s assertion. Motivated by this discovery the optimal rate of convergence $O(1/n)$ in the operator-norm topology under conditions of the Rogava theorem was proved only in 2001 (the Ichinose-Tamura-Tamura-Zagrebnov theorem) for both the Trotter and the Trotter-Kato product formulae. Under new fractional conditions on generators A and B the optimal rate of the Trotter-Kato product formulae convergence in the operator-norm topology on a Hilbert space was established in the Ichinose-Neidhardt-Zagrebnov (INZ)-theorem (2004).
I shall present these and some other recent results about the Lie-Trotter-Kato product formulae on Hilbert and Banach spaces, which are collected in the book: V. A. Zagrebnov, H. Neidhardt, T. Ichinose, Trotter-Kato Product Formulae, 2024.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025