|
|
Seminar on Analysis, Differential Equations and Mathematical Physics
18 сентября 2025 г. 18:00–19:00, г. Ростов-на-Дону, online
|
|
|
|
|
|
|
On a homothety conjecture for convex bodies of flotation: counterexample
D. Ryabogin Kent State University
|
|
Аннотация:
Let $K$ be a convex body in ${\mathbb R^2 }$. For every $\theta\in
{\mathbb R}$ and the corresponding unit vector
$e(\theta)=(\cos\theta,\sin\theta)$ and for every $t\in {\mathbb R}$,
define the half-planes
$$
W^+(\theta,t)=\{x:\,\langle x, e(\theta)\rangle\ge
t\}\quad\textrm{and}\quad W^-(\theta,t)=\{x:\,\langle x,
e(\theta)\rangle\le t\}.
$$
If $0<{\mathcal D}<1/2$, then for every $\theta\in{\mathbb
R}$ , there
is a unique $t(\theta)$ such that
$$
\textrm{vol}_2(W^+(\theta, t(\theta))\cap K)={\mathcal
D}\,\textrm{vol}_2(K).
$$
The corresponding convex body of flotation $K^{\mathcal D}$
is defined as
$$
K^{\mathcal D}=\bigcap\limits_{ \theta\in {\mathbb R}
}W^-(\theta,t(\theta)).
$$
We investigate the homothety conjecture for convex bodies of flotation
of planar domains. We show that there is a density close to
$\frac{1}{2}$ for which there is a body $K$ different from an ellipse
with the property that $K^{{\mathcal D}}$ is homothetic to $K$.
Язык доклада: английский
Website:
https://msrn.tilda.ws/sl
|
|