Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Семинар Добрушинской лаборатории Высшей школы современной математики МФТИ
23 сентября 2025 г. 16:15,  МФТИ, адм. корпус ауд. 322, Первомайская ул., 7, Долгопрудный
 


Динамические системы на торе, моделирующие переход Джозефсона, зоны захвата, перемычки и уравнения Гойна

А. А. Глуцюк

Московский физико-технический институт (национальный исследовательский университет), Высшая школа современной математики

Аннотация: Эффект туннелирования в сверхпроводимости, открытый Б. Джозефсоном в 1960-е гг. (Нобелевская премия по физике за 1973 г.) относится к Джозефсоновскому переходу: системе двух сверхпроводников, разделенных тонким слоем диэлектрика. Он состоит в том, что если слой диэлектрика достаточно тонок, то сквозь него потечет сверхпроводящий ток, описываемый уравнением, открытым Джозефсоном. Мы обсудим модель так называемого сильно шунтированного перехода Джозефсона: замечательное семейство дифференциальных уравнений на двумерном торе, встречающееся в разных областях математики, механики и физики. Семейство зависит от двух параметров (B,A) плюс третий параметр: фиксированная частота “внешней накачки”. Интересно изучать число вращения динамической системы на торе как функцию от (В,А) и зоны захвата: те ее множества уровня, которые имеют непустую внутренность, аналоги знаменитых языков Арнольда. Как показали В. М. Бухштабер, О. В. Карпов и С. И. Тертычный, они существуют только для целых чисел вращения. Каждая зона является бесконечной гирляндой из областей, разделенных точками. Те из них, которые не лежат на оси абсцисс, называются перемычками. В докладе будет намечено экспериментального факта и гипотезы о том, что в каждой зоне все перемычки лежат на одной прямой: совместный результат Ю. П. Бибило и докладчика. Оно основано на связи рассматриваемой модели с дважды конфлюэнтными уравнениями Гойна на сфере Римана, явлением Стокса, изомонодромными деформациями, уравнениями Пенлеве 3 и быстро-медленными системами. Будет дан обзор открытых задач и результатов. Будет представлена деформация данной модели, эквивалентная семейству общих уравнений Гойна на сфере Римана (ответ на вопрос А. С. Горского). Мы покажем, что в деформированной модели все перемычки размыкаются (совместный результат с А. А. Александровым).
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025