Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Вероятностные методы в анализе и теория аппроксимации 2025
28 ноября 2025 г. 15:50–16:25, Секция 1, г. Санкт-Петербург, Факультет математики и компьютерных наук СПбГУ (14-ая линия В. О., 29б), ауд. 201
 


Uncertainty of Tensor Graphical Model Selection

I. D. Kostylev

National Research University – Higher School of Economics in Nizhny Novgorod

Аннотация: Graphical modeling is a powerful tool for various applied research. Usually, graphical models are associated with some multivariate (vector) distribution including Gaussian and others. It means that for each entity within a dataset, each feature would be a univariate random variable (scalar). However, in some applications, it may be beneficial to represent features associated with a single entity as multidimensional random variables. This idea leads to tensor graphical models where the dataset is given as tensor data, for example, vectors (1st order tensor, classic graphical models), matrices (2nd order tensor) or tensors of higher order. A key question is: what is the relationship between the expected quality of tensor graphical model selection and the edge density of true underlying graph? In this talk, we will present the results of the uncertainty analysis of one of the popular tensor graphical model selection algorithms, TLasso.
This is a joint work with V. A. Kalyagin, HSE NN.

Язык доклада: английский

* Zoom ID: 675-315-555, Password: mkn
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025