Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Workshop on birational geometry
11 декабря 2025 г. 17:00–18:30, г. Москва, МИАН, online
 


Abelian groups of K3 type acting on rationally connected varieties

Konstantin Loginov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Количество просмотров:
Эта страница:26

Аннотация: This talk addresses the classification of finite abelian subgroups in the automorphism groups of rationally connected varieties. This is a classical problem, with its origins going back to the late 19th century. An interesting dichotomy arises in dimension two: the finite abelian subgroups of Cremona group of rank 2 can be divided into two types. The first type consists of groups that can act on a Mori fiber space with non-trivial base (that is, on a conic bundle). The second, “exceptional” type, corresponds to elliptic curves with complex multiplication anti-canonically embedded in certain del Pezzo surfaces. We try to extend this observation to higher dimensions. In general, such exceptional abelian groups should originate from highly symmetric Calabi-Yau subvarieties found in birational modifications of the original rationally connected variety. In dimension 3, this role is played by anti-canonically embedded K3 surfaces of higher Picard rank, leading to a complete classification with exactly four exceptional groups. While these groups are realizable, their embedding into the Cremona group of rank 3 remains an open problem. We will also explore the extension problem for finite abelian groups and its connection to the geometry of 4-dimensional Mori fiber spaces.

Язык доклада: английский
См. также
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025