Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Международная конференция «QP 34 – Quantum Probability and Related Topics»
17 сентября 2013 г. 12:00–12:30, г. Москва, МИАН
 


On the normal form of multimode squeezings

A. M. Chebotarev, T. V. Tlyachev, A. E. Teretenkov, V. V. Belokurov

M. V. Lomonosov Moscow State University

A. M. Chebotarev, T. V. Tlyachev, A. E. Teretenkov, V. V. Belokurov



Аннотация: We describe the solution of algebraic equations for the coefficients of the normal factorization
$$ U_t=e^{i\widehat H t}=e^{s_t}e^{-\frac{1}{2}(a^\dagger,R_ta^\dagger)-(g_t,a^\dagger)}\,e^{(a^\dagger,C_t a)}\,e^{\frac{1}{2} (a,\overline\rho_t a)+(\overline f_t,a)} $$
of the unitary group $U_t$ with Hamiltonian
$$ \widehat H= \frac{i}{2}((a^\dagger,Aa^\dagger)-(a,\overline A a))+(a^\dagger,B a)+i(a^\dagger,h)-i(a,\overline h) $$
in terms of the matrices $\Phi_t$, $\Psi_t$ which define the canonical transformation of the creation-annihilation operators. Such a decomposition defines the normal symbol of squeezing and the inner products of squeezed states which are necessary for constructing a basis in a linear hull generated by a finite set of squeezed states. A new class of solvable quantum problems is related to Hamiltonians with $A$ and $B$ such that $[A\overline A,B]=0$ and $\operatorname{rank}A\overline A\ge \operatorname{rank}B$. In this case, the solution is expressed in terms of the eigenvalues of the Hermitian matrix $A\overline A-B^2$.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025