Семинары
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Календарь
Поиск
Регистрация семинара

RSS
Ближайшие семинары




Совместный семинар лаборатории J.-V. Poncelet и сектора Алгебры и теории чисел № 4.1 ИППИ РАН «Арифметика, геометрия и теория кодирования»
1 октября 2013 г. 17:00, г. Москва, НМУ (Большой Власьевский пер., 11), ауд. 307
 


Linear Sections of the Grassmannian over Finite Fields

K. V. Kaipa

Аннотация: We start with an asymptotic formula for the cardinality of an arbitrary hyperplane section of theGrassmann variety over a finite field with $q$ elements. This formula has bearing on three interesting problems:
1) We present a new asymptotic formula in $q$ for the number of [n,k]_q MDS codes.
2) Higher weights of Grassmann codes: For each number j, what is the maximum number of points n(j) that can lie on the intersection of the Grassmannian with a j dimensional subspace of the Plucker space? This is an open problem except for very small or large j. We report on recent progress on this problem.
3) Is every hyperplane section of the Grassmannian over ar F_p a normal variety? We report on progress on this implied by the estimate above, together with a generalization due to Skorobogatov of the Lefschetz hyperplane theorem for singular varieties in ell-adic cohomology.
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025