|
Эта публикация цитируется в 18 научных статьях (всего в 18 статьях)
Optical Dromions and Domain Walls with the Kundu – Mukherjee – Naskar Equation by the Laplace – Adomian Decomposition Scheme
Oswaldo González-Gaxiolaa, Anjan Biswasbcde, Mir Asmaf, Abdullah Kamis Alzahranid a Departamento de Matemáticas Aplicadas y Sistemas,
Universidad Autónoma Metropolitana-Cuajimalpa,
Vasco de Quiroga 4871, 05348 Mexico City, Mexico
b Department of Physics, Chemistry and Mathematics, Alabama A&M University,
AL 35762-4900 Normal, USA
c Department of Applied Mathematics, National Research Nuclear University MEPhI,
Kashirskoe sh. 31, 115409 Moscow, Russia
d Department of Mathematics, King Abdulaziz University,
21589 Jeddah, Saudi Arabia
e Department of Mathematics and Statistics, Tshwane University of Technology,
0008 Pretoria, South Africa
f Institute of Mathematical Sciences, Faculty of Science, University of Malaya,
50603 Kuala Lumpur, Malaysia
Аннотация:
This paper numerically addresses optical dromions and domain walls that are monitored by Kundu – Mukherjee – Naskar equation. The Kundu – Mukherjee – Naskar equation is considered because this model describes the propagation of soliton dynamics in optical fiber communication system. The scheme employed in this work is Laplace – Adomian decomposition type. The accuracy of the scheme is $O(10^{-8})$ and the physical structure of the obtained solutions are shown by graphic illustration in order to give a better understanding on the dynamics of both optical dromions and domain walls.
Ключевые слова:
Kundu – Mukherjee – Naskar equation, optical dromions, domain walls, Laplace – Adomian decomposition method, Adomian polynomials.
Поступила в редакцию: 27.04.2020 Принята в печать: 17.06.2020
Образец цитирования:
Oswaldo González-Gaxiola, Anjan Biswas, Mir Asma, Abdullah Kamis Alzahrani, “Optical Dromions and Domain Walls with the Kundu – Mukherjee – Naskar Equation by the Laplace – Adomian Decomposition Scheme”, Regul. Chaotic Dyn., 25:4 (2020), 338–348
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1069 https://www.mathnet.ru/rus/rcd/v25/i4/p338
|
|