Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2021, том 26, выпуск 2, страницы 119–130
DOI: https://doi.org/10.1134/S1560354721020027
(Mi rcd1106)
 

Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)

Special Issue: Nonlinear Dynamics in Chemical Sciences: Part II

Second-order Saddle Dynamics in Isomerization Reaction

Richa Rashmia, Komal Yadava, Upakarasamy Lourderaja, Manikandan Paranjothyb

a School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, HBNI, Jatni P.O., Khurda, 752050 Odisha, India
b Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037 Rajasthan, India
Список литературы:
Аннотация: The role of second-order saddle in the isomerization dynamics was investigated by considering the $E-Z$ isomerization of guanidine. The potential energy profile for the reaction was mapped using the ab initio wavefunction method. The isomerization path involved a torsional motion about the imine (C-N) bond in a clockwise or an anticlockwise fashion resulting in two degenerate transition states corresponding to a barrier of 23.67 kcal/mol. An alternative energetically favorable path ($\sim$1 kcal/mol higher than the transition states) by an in-plane motion of the imine (N-H) bond via a second-order saddle point on the potential energy surface was also obtained. The dynamics of the isomerization was investigated by ab initio classical trajectory simulations. The trajectories reveal that isomerization happens via the transition states as well as the second-order saddle. The dynamics was found to be nonstatistical with trajectories exhibiting recrossing and the higher energy second-order saddle pathway preferred over the traditional transition state pathway. Wavelet based time-frequency analysis of internal coordinates indicate regular dynamics and existence of long-lived quasi-periodic trajectories in the phase space.
Ключевые слова: transition state, second-order saddle, reaction dynamics, RRKM, potential energy surface, wavelet transform, time-frequency analysis.
Финансовая поддержка Номер гранта
Science and Engineering Research Board EMR/2017/004843
This work was supported by the grant of the Science and Engineering Board (SERB), India (No. EMR/2017/004843).
Поступила в редакцию: 15.08.2020
Принята в печать: 30.11.2020
Реферативные базы данных:
Тип публикации: Статья
MSC: 92E99
Язык публикации: английский
Образец цитирования: Richa Rashmi, Komal Yadav, Upakarasamy Lourderaj, Manikandan Paranjothy, “Second-order Saddle Dynamics in Isomerization Reaction”, Regul. Chaotic Dyn., 26:2 (2021), 119–130
Цитирование в формате AMSBIB
\RBibitem{RasYadLou21}
\by Richa Rashmi, Komal Yadav, Upakarasamy Lourderaj, Manikandan Paranjothy
\paper Second-order Saddle Dynamics in Isomerization Reaction
\jour Regul. Chaotic Dyn.
\yr 2021
\vol 26
\issue 2
\pages 119--130
\mathnet{http://mi.mathnet.ru/rcd1106}
\crossref{https://doi.org/10.1134/S1560354721020027}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4240802}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000636979900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104032125}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1106
  • https://www.mathnet.ru/rus/rcd/v26/i2/p119
  • Эта публикация цитируется в следующих 5 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025