|
Alexey Borisov Memorial Volume
Normal Forms for Hamiltonian Systems
in Some Nilpotent Cases
Kenneth R. Meyera, Dieter S. Schmidtb a Department of Mathematical Sciences, University of Cincinnati,
45221-0025 Cincinnati Ohio, USA
b Department of Electrical Engineering and Computer Science, University of Cincinnati,
45221-0030 Cincinnati Ohio, USA
Аннотация:
We study Hamiltonian systems with two degrees of freedom near an equilibrium
point, when the linearized system is not semisimple. The invariants of the adjoint linear system
determine the normal form of the full Hamiltonian system. For work on stability or bifurcation
the problem is typically reduced to a semisimple (diagonalizable) case. Here we study the
nilpotent cases directly by looking at the Poisson algebra generated by the polynomials of the
linear system and its adjoint.
Ключевые слова:
Hamiltonian, invariants, normal form, nilpotent.
Поступила в редакцию: 06.10.2022 Принята в печать: 05.07.2022
Образец цитирования:
Kenneth R. Meyer, Dieter S. Schmidt, “Normal Forms for Hamiltonian Systems
in Some Nilpotent Cases”, Regul. Chaotic Dyn., 27:5 (2022), 538–560
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1179 https://www.mathnet.ru/rus/rcd/v27/i5/p538
|
|