|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid
Andrey V. Tsiganov St. Petersburg State University,
ul. Ulyanovskaya 1, 198504 St. Petersburg, Russia
Аннотация:
Affine transformations in Euclidean space generate a correspondence between
integrable systems on cotangent bundles to a sphere, ellipsoid and hyperboloid embedded in
$R^n$. Using this correspondence and the suitable coupling constant transformations, we can get
real integrals of motion in the hyperboloid case starting with real integrals of motion in the
sphere case. We discuss a few such integrable systems with invariants which are cubic, quartic
and sextic polynomials in momenta.
Ключевые слова:
completely integrable systems, Dirac brackets.
Поступила в редакцию: 17.11.2022 Принята в печать: 06.07.2023
Образец цитирования:
Andrey V. Tsiganov, “Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid”, Regul. Chaotic Dyn., 28:6 (2023), 805–821
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1234 https://www.mathnet.ru/rus/rcd/v28/i6/p805
|
|