|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Unifying the Hyperbolic and Spherical $2$-Body Problem with Biquaternions
Philip Arathoon University of Michigan,
2074 East Hall, 530 Church Street, MI 48109 Ann Arbor, USA
Аннотация:
The $2$-body problem on the sphere and hyperbolic space are both real forms
of holomorphic Hamiltonian systems defined on the complex sphere. This admits a natural
description in terms of biquaternions and allows us to address questions concerning the
hyperbolic system by complexifying it and treating it as the complexification of a spherical
system. In this way, results for the $2$-body problem on the sphere are readily translated to
the hyperbolic case. For instance, we implement this idea to completely classify the relative
equilibria for the $2$-body problem on hyperbolic $3$-space and discuss their stability for a strictly
attractive potential.
Ключевые слова:
$2$-body problem, reduction, relative equilibria.
Поступила в редакцию: 13.02.2023 Принята в печать: 17.05.2023
Образец цитирования:
Philip Arathoon, “Unifying the Hyperbolic and Spherical $2$-Body Problem with Biquaternions”, Regul. Chaotic Dyn., 28:6 (2023), 822–834
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1235 https://www.mathnet.ru/rus/rcd/v28/i6/p822
|
|