|
Non-Integrable Sub-Riemannian Geodesic Flow on $J^{2}(\mathbb{R}^2,\mathbb{R})$
Alejandro Bravo-Doddoli Dept. of Mathematics, UCSC,
1156 High Street, 95064 Santa Cruz, CA
Аннотация:
The space of $2$-jets of a real function of two real variables, denoted by $J^2(\mathbb{R}^2,\mathbb{R})$, admits the structure of a metabelian Carnot group, so $J^2(\mathbb{R}^2,\mathbb{R})$ has a normal abelian sub-group $\mathbb{A}$. As any sub-Riemannian manifold, $J^2(\mathbb{R}^2,\mathbb{R})$ has an associated Hamiltonian geodesic flow. The Hamiltonian action of $\mathbb{A}$ on $T^*J^2(\mathbb{R}^2,\mathbb{R})$ yields the reduced Hamiltonian $H_{\mu}$ on $T^*\mathcal{H} \simeq T^*(J^2(\mathbb{R}^2,\mathbb{R})/\mathbb{A})$, where $H_{\mu}$ is a two-dimensional Euclidean space. The paper is devoted to proving that the reduced Hamiltonian $H_{\mu}$ is non-integrable by meromorphic functions for some values of $\mu$. This result suggests the sub-Riemannian geodesic flow on $J^{2}(\mathbb{R}^2,\mathbb{R})$ is not meromorphically integrable.
Ключевые слова:
Carnot group, Jet space, non-integrable system, sub-Riemannian geometry.
Поступила в редакцию: 13.12.2022 Принята в печать: 04.08.2023
Образец цитирования:
Alejandro Bravo-Doddoli, “Non-Integrable Sub-Riemannian Geodesic Flow on $J^{2}(\mathbb{R}^2,\mathbb{R})$”, Regul. Chaotic Dyn., 28:6 (2023), 835–840
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1236 https://www.mathnet.ru/rus/rcd/v28/i6/p835
|
| Статистика просмотров: |
| Страница аннотации: | 132 | | Список литературы: | 42 |
|