Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2024, том 29, выпуск 3, страницы 451–473
DOI: https://doi.org/10.1134/S156035472451004X
(Mi rcd1263)
 

Numerical Evidence of Hyperbolic Dynamics and Coding of Solutions for Duffing-Type Equations with Periodic Coefficients

Mikhail E. Lebedeva, Georgy L. Alfimovbc

a Nuclera Ltd, One Vision Park, Station Road, Impington, CB24 9NP Cambridge, UK
b Institute of Mathematics with Computer Center, Ufa Scientific Center, Russian Academy of Sciences, ul. Chernyshevskii 112, 450008 Ufa, Russia
c Moscow Institute of Electronic Engineering, Zelenograd, 124498 Moscow, Russia
Список литературы:
Аннотация: In this paper, we consider the equation $u_{xx}+Q(x)u+P(x)u^3=0$ where $Q(x)$ and $P(x)$ are periodic functions. { It is known that, if $P(x)$ changes sign, a “great part” of the solutions for this equation are singular, i. e., they tend to infinity at a finite point of the real axis. Our aim is to describe as completely as possible solutions, which are regular (i. e., not singular) on $\mathbb{R}$. For this purpose we consider the Poincaré map $\mathcal{P}$ (i. e., the map-over-period) for this equation and analyse the areas of the plane $(u,u_x)$ where $\mathcal{P}$ and $\mathcal{P}^{-1}$ are defined. We give sufficient conditions for hyperbolic dynamics generated by $\mathcal{P}$ in these areas and show that the regular solutions correspond to a Cantor set situated in these areas. We also present a numerical algorithm for verifying these sufficient conditions at the level of “numerical evidence”. This allows us to describe regular solutions of this equation, completely or within some class, by means of symbolic dynamics. We show that regular solutions can be coded by bi-infinite sequences of symbols of some alphabet, completely or within some class. Examples of the application of this technique are given.
Ключевые слова: Duffing-type equation, periodic coefficients, symbolic dynamics, numerical evidence
Финансовая поддержка Номер гранта
Российский научный фонд 23-11-00009
The work of GLA was supported by the Russian Science Foundation (Grant No. 23-11-00009).
Поступила в редакцию: 04.09.2023
Принята в печать: 21.03.2024
Тип публикации: Статья
MSC: 34A34, 37B10, 37D05
Язык публикации: английский
Образец цитирования: Mikhail E. Lebedev, Georgy L. Alfimov, “Numerical Evidence of Hyperbolic Dynamics and Coding of Solutions for Duffing-Type Equations with Periodic Coefficients”, Regul. Chaotic Dyn., 29:3 (2024), 451–473
Цитирование в формате AMSBIB
\RBibitem{LebAlf24}
\by Mikhail E. Lebedev, Georgy L. Alfimov
\paper Numerical Evidence of Hyperbolic Dynamics and Coding of Solutions for Duffing-Type Equations with Periodic Coefficients
\jour Regul. Chaotic Dyn.
\yr 2024
\vol 29
\issue 3
\pages 451--473
\mathnet{http://mi.mathnet.ru/rcd1263}
\crossref{https://doi.org/10.1134/S156035472451004X}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1263
  • https://www.mathnet.ru/rus/rcd/v29/i3/p451
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025