|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Special Issue: 70 Years of KAM Theory (Issue Editors: Alessandra Celletti, Luigi Chierchia, and Dmitry Treschev)
Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians
Donato Scarcella Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Diagonal 647, 08028 Barcelona, Spain
Аннотация:
We consider time-dependent perturbations of integrable and near-integrable Hamiltonians.
Assuming the perturbation decays polynomially fast as time tends to infinity, we prove
the existence of biasymptotically quasi-periodic solutions. That is, orbits converging to some
quasi-periodic solutions in the future (as $t \rightarrow +\infty$) and the past (as $t \rightarrow -\infty$).
Concerning the proof, thanks to the implicit function theorem, we prove the existence of
a family of orbits converging to some quasi-periodic solutions in the future and another
family of motions converging to some quasi-periodic solutions in the past. Then, we look at
the intersection between these two families when $t = 0$. Under suitable hypotheses on the
Hamiltonian’s regularity and the perturbation’s smallness, it is a large set, and each point
gives rise to biasymptotically quasi-periodic solutions.
Ключевые слова:
dynamical systems, Hamiltonian systems, KAM tori, time dependence
Поступила в редакцию: 03.04.2023 Принята в печать: 08.02.2024
Образец цитирования:
Donato Scarcella, “Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians”, Regul. Chaotic Dyn., 29:4 (2024), 620–653
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1273 https://www.mathnet.ru/rus/rcd/v29/i4/p620
|
|