|
On Smoothness of Invariant Foliations Near a Homoclinic Bifurcation Creating Lorenz-Like Attractors
Mikhail I. Malkinab, Klim A. Safonova a National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
b Lobachevsky State University of Nizhny Novgorod,
pr. Gagarina 23, 603022 Nizhny Novgorod, Russia
Аннотация:
This paper deals with the problem of smoothness of the stable invariant foliation
for a homoclinic bifurcation with a neutral saddle in symmetric systems of differential equations.
We give an improved sufficient condition for the existence of an invariant smooth foliation on a
cross-section transversal to the stable manifold of the saddle. It is shown that the smoothness
of the invariant foliation depends on the gap between the leading stable eigenvalue of the saddle
and other stable eigenvalues. We also obtain an equation to describe the one-dimensional factor
map, and we study the renormalization properties of this map. The improved information on
the smoothness of the foliation and the factor map allows one to extend Shilnikov’s results on
the birth of Lorenz attractors under the bifurcation considered.
Ключевые слова:
Lorenz attractor, homoclinic bifurcation, invariant foliation
Поступила в редакцию: 14.10.2024 Принята в печать: 24.12.2024
Образец цитирования:
Mikhail I. Malkin, Klim A. Safonov, “On Smoothness of Invariant Foliations Near a Homoclinic Bifurcation Creating Lorenz-Like Attractors”, Regul. Chaotic Dyn., 30:1 (2025), 26–44
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1294 https://www.mathnet.ru/rus/rcd/v30/i1/p26
|
| Статистика просмотров: |
| Страница аннотации: | 94 | | Список литературы: | 28 |
|