|
Scientific Heritage of L.P. Shilnikov. Part II. Homoclinic Chaos
Sergey V. Gonchenkoab, Lev M. Lermanab, Andrey L. Shilnikovc, Dmitry V. Turaevd a National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
b Lobachevsky State University,
pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
c Neuroscience Institute and Department of Mathematics and Statistics,
Georgia State University, 30303 Atlanta, USA
d Imperial College,
SW7 2AZ London, UK
Аннотация:
We review the works initiated and developed by L.P. Shilnikov on homoclinic
chaos, highlighting his fundamental contributions to Poincaré homoclinics to periodic orbits
and invariant tori. Additionally, we discuss his related findings in non-autonomous and infinitedimensional
systems. This survey continues our earlier review [1], where we examined Shilnikov's
groundbreaking results on bifurcations of homoclinic orbits — his extension of the classical work
by A.A. Andronov and E.A. Leontovich from planar to multidimensional autonomous systems,
as well as his pioneering discoveries on saddle-focus loops and spiral chaos.
Ключевые слова:
saddle periodic orbit, Poincaré homoclinic orbit, hyperbolic set, symbolic dynamics,
nonautonomous system, integral curve, exponential dichotomy, Banach space
Поступила в редакцию: 05.02.2025 Принята в печать: 10.03.2025
Образец цитирования:
Sergey V. Gonchenko, Lev M. Lerman, Andrey L. Shilnikov, Dmitry V. Turaev, “Scientific Heritage of L.P. Shilnikov. Part II. Homoclinic Chaos”, Regul. Chaotic Dyn., 30:2 (2025), 155–173
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1302 https://www.mathnet.ru/rus/rcd/v30/i2/p155
|
|