|
A Geometric Model for Pseudohyperbolic Shilnikov Attractors
Dmitry Turaev Imperial College,
SW7 2AZ London, UK
Аннотация:
We describe a $C^1$-open set of systems of differential equations in $R^n$, for any $n\geqslant 4$, where every system has a chain-transitive chaotic attractor which
contains a saddle-focus equilibrium with a two-dimensional unstable manifold. The attractor also includes a wild hyperbolic set and a heterodimensional cycle involving
hyperbolic sets with different numbers of positive Lyapunov exponents.
Ключевые слова:
saddle-focus, homoclinic loop, spiral chaos
Поступила в редакцию: 06.01.2025 Принята в печать: 12.03.2025
Образец цитирования:
Dmitry Turaev, “A Geometric Model for Pseudohyperbolic Shilnikov Attractors”, Regul. Chaotic Dyn., 30:2 (2025), 174–187
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1303 https://www.mathnet.ru/rus/rcd/v30/i2/p174
|
|