Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2025, том 30, выпуск 2, страницы 226–253
DOI: https://doi.org/10.1134/S1560354725020042
(Mi rcd1305)
 

On Morse – Smale 3-Diffeomorphisms with a Given Tuple of Sink Points Periods

Marina K. Barinova, Evgenii M. Osenkov, Olga V. Pochinka

International Laboratory of Dynamical Systems and Applications, HSE University, ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia
Список литературы:
Аннотация: In investigating dynamical systems with chaotic attractors, many aspects of global behavior of a flow or a diffeomorphism with such an attractor are studied by replacing a nontrivial attractor by a trivial one [1, 2, 11, 14]. Such a method allows one to reduce the original system to a regular system, for instance, of a Morse – Smale system, matched with it. In most cases, the possibility of such a substitution is justified by the existence of Morse – Smale diffeomorphisms with partially determined periodic data, the complete understanding of their dynamics and the topology of manifolds, on which they are defined. With this aim in mind, we consider Morse – Smale diffeomorphisms $f$ with determined periods of the sink points, given on a closed smooth 3-manifold. {We have shown that, if the total number of these sinks is $k$, then their nonwandering set consists of an even number of points which is at least $2k$. We have found necessary and sufficient conditions for the realizability of a set of sink periods in the minimal nonwandering set. We claim that such diffeomorphisms exist only on the 3-sphere and establish for them a sufficient condition for the existence of heteroclinic points. In addition, we prove that the Morse – Smale 3-diffeomorphism with an arbitrary set of sink periods can be implemented in the nonwandering set consisting of $2k+2$ points. We claim that any such a diffeomorphism is supported by a lens space or the skew product $\mathbb S^2\;\tilde{\times}\;\mathbb S^1$.
Ключевые слова: Morse – Smale diffeomorphism, abstract scheme, periodic data, ambient manifold topology, surgery along lamination, orbit space, non-orientable manifolds
Финансовая поддержка
The article was prepared within the framework of the project “International Academic Cooperation” HSE University.
Поступила в редакцию: 07.10.2024
Принята в печать: 20.02.2025
Тип публикации: Статья
MSC: 37C05, 37D05, 37D15
Язык публикации: английский
Образец цитирования: Marina K. Barinova, Evgenii M. Osenkov, Olga V. Pochinka, “On Morse – Smale 3-Diffeomorphisms with a Given Tuple of Sink Points Periods”, Regul. Chaotic Dyn., 30:2 (2025), 226–253
Цитирование в формате AMSBIB
\RBibitem{BarOsePoc25}
\by Marina K. Barinova, Evgenii M. Osenkov, Olga V. Pochinka
\paper On Morse – Smale 3-Diffeomorphisms with a Given Tuple of Sink Points Periods
\jour Regul. Chaotic Dyn.
\yr 2025
\vol 30
\issue 2
\pages 226--253
\mathnet{http://mi.mathnet.ru/rcd1305}
\crossref{https://doi.org/10.1134/S1560354725020042}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1305
  • https://www.mathnet.ru/rus/rcd/v30/i2/p226
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025