|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Parametrised KAM Theory, an Overview
Henk W. Broera, Heinz Hanßmannb, Florian Wagenerc a Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
Rijksuniversiteit Groningen,
Postbus 407, 9700 AK Groningen, The Netherlands
b Mathematisch Instituut, Universiteit Utrecht,
Postbus 80010, 3508 TA Utrecht, The Netherlands
c Center for Nonlinear Dynamics in Economics and Finance (CeNDEF),
Universiteit van Amsterdam,
Postbus 15867, 1001 NJ Amsterdam, The Netherlands
Аннотация:
Kolmogorov – Arnold – Moser theory started in the 1950s as the perturbation theory
for persistence of multi- or quasi-periodic motions in Hamiltonian systems. Since then the theory
obtained a branch where the persistent occurrence of quasi-periodicity is studied in various
classes of systems, which may depend on parameters. The view changed into the direction
of structural stability, concerning the occurrence of quasi-periodic tori on a set of positive
Hausdorff measure in a sub-manifold of the product of phase space and parameter space. This
paper contains an overview of this development with an emphasis on the world of dissipative
systems, where families of quasi-periodic tori occur and bifurcate in a persistent way. The
transition from orderly to chaotic dynamics here forms a leading thought.
Ключевые слова:
quasi-periodic invariant tori, KAM theory, persistence, bifurcations
Поступила в редакцию: 24.05.2024 Принята в печать: 12.02.2025
Образец цитирования:
Henk W. Broer, Heinz Hanßmann, Florian Wagener, “Parametrised KAM Theory, an Overview”, Regul. Chaotic Dyn., 30:3 (2025), 408–450
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1313 https://www.mathnet.ru/rus/rcd/v30/i3/p408
|
|