|
Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)
The Lorentzian Anti-de Sitter Plane
Anton Z. Alia, Yuri L. Sachkovb a Lomonosov Moscow State University,
Leninskie Gory 1, 119991 Moscow, Russia
b Ailamazyan Program Systems Institute RAS, RUDN University,
152020 Pereslavl-Zalessky, Russia
Аннотация:
In this paper the two-dimensional Lorentzian problem on the anti-de Sitter plane
is studied. Using methods of geometric control theory and differential geometry, we describe
the reachable set, investigate the existence of Lorentzian length maximizers, compute extremal
trajectories, construct an optimal synthesis, characterize Lorentzian distance and spheres, and
describe the Lie algebra of Killing vector fields.
Ключевые слова:
Lorentzian geometry, geometric control theory, optimal control
Поступила в редакцию: 21.04.2025 Принята в печать: 15.07.2025
Образец цитирования:
Anton Z. Ali, Yuri L. Sachkov, “The Lorentzian Anti-de Sitter Plane”, Regul. Chaotic Dyn., 30:4 (2025), 504–537
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1318 https://www.mathnet.ru/rus/rcd/v30/i4/p504
|
|