|
Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)
Singular KAM Theory for Convex Hamiltonian Systems
Santiago Barbieria, Luca Biascob, Luigi Chierchiab, Davide Zaccariac a Departament d’Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona,
6 Campus Montilivi, 17003 Girona, Spain
b Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre,
Largo San Leonardo Murialdo 1, 00146 Roma, Italy
c Department of Mathematics, University of Toronto,
40 St George St., M5S 2E4 Toronto, Canada
Аннотация:
In this note, we briefly discuss how the singular KAM theory of [7] — which was worked out for the mechanical case $\frac12 |y|^2+\varepsilon f(x)$ — can be extended to convex real-analytic
nearly integrable Hamiltonian systems
with Hamiltonian in action-angle variables given by $h(y)+\varepsilon f(x)$ with $h$ convex and
$f$ generic.
Ключевые слова:
nearly integrable Hamiltonian systems, convex Hamiltonians, measure of invariant
tori, simple resonances, Arnold – Kozlov – Neishtadt conjecture, singular KAM theory
Поступила в редакцию: 18.06.2025 Принята в печать: 18.07.2025
Образец цитирования:
Santiago Barbieri, Luca Biasco, Luigi Chierchia, Davide Zaccaria, “Singular KAM Theory for Convex Hamiltonian Systems”, Regul. Chaotic Dyn., 30:4 (2025), 538–549
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1319 https://www.mathnet.ru/rus/rcd/v30/i4/p538
|
|