|
Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)
The Ozawa Solution to the Davey – Stewartson II Equations and Surface Theory
Yi C. Huanga, Iskander A. Taimanovb a School of Mathematical Sciences, Nanjing Normal University,
210023 Nanjing, People’s Republic of China
b Sobolev Institute of Mathematics,
630090 Novosibirsk, Russia
Аннотация:
We describe the Ozawa solution to the Davey – Stewartson II equation from the
point of view of surface theory by presenting a soliton deformation of surfaces which is ruled
by the Ozawa solution. The Ozawa solution blows up at a certain moment and we describe
explicitly the corresponding singularity of the deformed surface.
Ключевые слова:
spinor representation of surfaces, surface deformation, Davey – Stewartson II equation, Moutard transformation, singularity formation, two-dimensional Dirac operators
Поступила в редакцию: 13.05.2025 Принята в печать: 09.08.2025
Образец цитирования:
Yi C. Huang, Iskander A. Taimanov, “The Ozawa Solution to the Davey – Stewartson II Equations and Surface Theory”, Regul. Chaotic Dyn., 30:4 (2025), 612–617
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1324 https://www.mathnet.ru/rus/rcd/v30/i4/p612
|
|