|
Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)
Rolling of a Homogeneous Ball on a Moving Cylinder
Alexander A. Kilina, Elena N. Pivovarovaa, Tatiana B. Ivanovab a Ural Mathematical Center, Udmurt State University,
ul. Universitetskaya 1, 426034 Izhevsk, Russia
b M. T. Kalashnikov Izhevsk State Technical University,
ul. Studencheskaya 7, 426069 Izhevsk, Russia
Аннотация:
This paper addresses the problem of a homogeneous ball rolling on the inner surface
of a circular cylinder in a field of gravity parallel to its axis. It is assumed that the ball rolls
without slipping on the surface of the cylinder, and that the cylinder executes plane-parallel
motions in a circle perpendicular to its symmetry axis. The integrability of the problem by
quadratures is proved. It is shown that in this problem the trajectories of the ball are quasi-
periodic in the general case, and that an unbounded elevation of the ball is impossible. However,
in contrast to a fixed (or rotating) cylinder, there exist resonances at which the ball moves on
average downward with constant acceleration.
Ключевые слова:
homogeneous ball, nonholonomic constraint, surface of revolution, moving cylinder, unbounded drift, nonautonomous system, quadrature, integrability
Поступила в редакцию: 25.10.2024 Принята в печать: 20.12.2024
Образец цитирования:
Alexander A. Kilin, Elena N. Pivovarova, Tatiana B. Ivanova, “Rolling of a Homogeneous Ball on a Moving Cylinder”, Regul. Chaotic Dyn., 30:4 (2025), 628–638
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1326 https://www.mathnet.ru/rus/rcd/v30/i4/p628
|
|