|
Special Issue: Celebrating the 75th Birthday of V.V. Kozlov (Issue Editors: Sergey Bolotin, Vladimir Dragović, and Dmitry Treschev)
Metric Geometry and Forced Oscillations in Mechanical Systems
Ivan Yu. Polekhinabc a Lomonosov Moscow State University,
Leninskie Gory 1, 119991 Moscow, Russia
b P. G. Demidov Yaroslavl State University,
ul. Sovetskaya 14, 150003 Yaroslavl, Russia
c Steklov Mathematical Institute of Russian Academy of Sciences,
ul. Gubkina 8, 119991 Moscow, Russia
Аннотация:
We consider the problem of existence of forced oscillations on a Riemannian
manifold, the metric on which is defined by the kinetic energy of a mechanical system. Under the
assumption that the generalized forces are periodic functions of time, we find periodic solutions
of the same period. We present sufficient conditions for the existence of such solutions, which
essentially depend on the behavior of geodesics on the corresponding Riemannian manifold.
Ключевые слова:
geodesic, Riemannian manifold, forced oscillations, natural systems, geodesic flow, fixed-point theorems
Поступила в редакцию: 01.05.2025 Принята в печать: 16.07.2025
Образец цитирования:
Ivan Yu. Polekhin, “Metric Geometry and Forced Oscillations in Mechanical Systems”, Regul. Chaotic Dyn., 30:4 (2025), 732–741
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1331 https://www.mathnet.ru/rus/rcd/v30/i4/p732
|
|