|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Routh Symmetry in the Chaplygin’s Rolling Ball
Byungsoo Kim INRS-ETE, Quebec, G1K 9A9, Canada
Аннотация:
The Routh integral in the symmetric Chaplygin’s rolling ball has been regarded as a mysterious conservation law due to its interesting form of $\sqrt{I_1I_3+m\langle I s, s \rangle}\Omega_3$. In this paper, a new form of the Routh integral is proposed as a Noether’s pairing form of a conservation law. An explicit symmetry vector for the Routh integral is proved to associate the conserved quantity with the invariance of the Lagrangian function under the rollingly constrained nonholonomic variation. Then, the form of the Routh symmetry vector is discussed for its origin as the linear combination of the configurational vectors.
Ключевые слова:
non-holonomic system, Noether symmetry, integrable system, Lagrange–D’Alembert equations.
Поступила в редакцию: 21.06.2011 Принята в печать: 17.08.2011
Образец цитирования:
Byungsoo Kim, “Routh Symmetry in the Chaplygin’s Rolling Ball”, Regul. Chaotic Dyn., 16:6 (2011), 663–670
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd462 https://www.mathnet.ru/rus/rcd/v16/i6/p663
|
|