|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Lagrange’s Identity and Its Generalizations
V. V. Kozlov V.A. Steklov Institute of Mathematics, Russian Academy of Sciences,
ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
The famous Lagrange identity expresses the second derivative of the moment of inertia of a system of material points through the kinetic energy and homogeneous potential energy. The paper presents various extensions of this brilliant result to the case 1) of constrained mechanical systems, 2) when the potential energy is quasi-homogeneous in coordinates and 3) of continuum of interacting particles governed by the well-known Vlasov kinetic equation.
Ключевые слова:
Lagrange’s identity, quasi-homogeneous function, dilations, Vlasov’s equation.
Поступила в редакцию: 14.01.2008 Принята в печать: 07.02.2008
Образец цитирования:
V. V. Kozlov, “Lagrange’s Identity and Its Generalizations”, Regul. Chaotic Dyn., 13:2 (2008), 71–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd561 https://www.mathnet.ru/rus/rcd/v13/i2/p71
|
|