|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Stability of Equilibrium Solutions of Hamiltonian Systems Under the Presence of a Single Resonance in the Non-Diagonalizable Case
C. Vidala, F. Dos Santosb a Departamento de Matemática, Facultad de Ciencias,
Universidad del Bio Bio, Casilla 5-C, Concepción, VIII-Region, Chile
b Departamento de Matemática, Universidade Federal de Sergipe,
Av. Marechal Rondon, s/n Jardim Rosa Elze, São Cristóvão - SE, Brazil
Аннотация:
The problem of knowing the stability of one equilibrium solution of an analytic autonomous Hamiltonian system in a neighborhood of the equilibrium point in the case where all eigenvalues are pure imaginary and the matrix of the linearized system is non-diagonalizable is considered.We give information about the stability of the equilibrium solution of Hamiltonian systems with two degrees of freedom in the critical case. We make a partial generalization of the results to Hamiltonian systems with n degrees of freedom, in particular, this generalization includes those in [1].
Ключевые слова:
Hamiltonian system, stability, normal form, resonances.
Поступила в редакцию: 19.07.2007 Принята в печать: 14.04.2008
Образец цитирования:
C. Vidal, F. Dos Santos, “Stability of Equilibrium Solutions of Hamiltonian Systems Under the Presence of a Single Resonance in the Non-Diagonalizable Case”, Regul. Chaotic Dyn., 13:3 (2008), 166–177
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd568 https://www.mathnet.ru/rus/rcd/v13/i3/p166
|
|