|
Эта публикация цитируется в 27 научных статьях (всего в 27 статьях)
On Maximally Superintegrable Systems
A. V. Tsiganov V. A. Fock Institute of Physics, St. Petersburg State University,
Petrodvorets, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia
Аннотация:
Locally any completely integrable system is maximally superintegrable system since we have the necessary number of the action-angle variables. The main problem is the construction of the single-valued additional integrals of motion on the whole phase space by using these multi-valued action-angle variables. Some constructions of the additional integrals of motion for the Stackel systems and for the integrable systems related with two different quadratic $r$-matrix algebras are discussed. Among these system there are the open Heisenberg magnet and the open Toda lattices associated with the different root systems.
Ключевые слова:
superintegrable systems, Toda lattices, Stackel systems.
Поступила в редакцию: 09.01.2008 Принята в печать: 28.04.2008
Образец цитирования:
A. V. Tsiganov, “On Maximally Superintegrable Systems”, Regul. Chaotic Dyn., 13:3 (2008), 178–190
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd569 https://www.mathnet.ru/rus/rcd/v13/i3/p178
|
|