|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Local Normal Forms of Smooth Weakly Hyperbolic Integrable Systems
Kai Jiang Institut de Mathématiques de Jussieu — Paris Rive Gauche, Université Paris 7 7050 Bâtiment Sophie Germain, Case 7012, 75205 Paris CEDEX 13, France
Аннотация:
In the smooth $(C^\infty)$ category, a completely integrable system near a nondegenerate singularity is geometrically linearizable if the action generated by the vector fields is weakly hyperbolic. This proves partially a conjecture of Nguyen Tien Zung [11]. The main tool used in the proof is a theorem of Marc Chaperon [3] and the slight hypothesis of weak hyperbolicity is generic when all the eigenvalues of the differentials of the vector fields at the non-degenerate singularity are real.
Ключевые слова:
completely integrable systems, geometric linearization, nondegenerate singularity, weak hyperbolicity.
Поступила в редакцию: 02.04.2015 Принята в печать: 13.08.2015
Образец цитирования:
Kai Jiang, “Local Normal Forms of Smooth Weakly Hyperbolic Integrable Systems”, Regul. Chaotic Dyn., 21:1 (2016), 18–23
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd65 https://www.mathnet.ru/rus/rcd/v21/i1/p18
|
|