|
Эта публикация цитируется в 18 научных статьях (всего в 18 статьях)
Effective computations in modern dynamics
Poisson integrator for symmetric rigid bodies
H. R. Dullin Department of Mathematical Sciences,
Loughborough University, LE11 3TU, UK
Аннотация:
We derive an explicit second order reversible Poisson integrator for symmetric rigid bodies in space (i.e. without a fixed point). The integrator is obtained by applying a splitting method to the Hamiltonian after reduction by the $S^1$ body symmetry. In the particular case of a magnetic top in an axisymmetric magnetic field (i.e. the Levitron) this integrator preserves the two momentum integrals. The method is used to calculate the complicated boundary of stability near a linearly stable relative equilibrium of the Levitron with indefinite Hamiltonian.
Поступила в редакцию: 30.09.2004
Образец цитирования:
H. R. Dullin, “Poisson integrator for symmetric rigid bodies”, Regul. Chaotic Dyn., 9:3 (2004), 255–264
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd745 https://www.mathnet.ru/rus/rcd/v9/i3/p255
|
|