|
Эта публикация цитируется в 14 научных статьях (всего в 14 статьях)
150th anniversary of S.V. Kovalevskaya
A Brief History of Kovalevskaya Exponents and Modern Developments
A. Goriely University of Arizona,
Department of Mathematics,
and Program in Applied Mathematics,
Building 89, Tucson, AZ85721, USA
Аннотация:
The Kovalevskaya exponents are sets of exponents that can be associated with a given nonlinear vector field. They correspond to the Fuchs' indices of the linearized vector field around particular scale invariant solutions. They were used by S.Kovalevskaya to prove the single-valuedness of the classical cases of integrability of the rigid body motion. In this paper, a history of the discovery and multiple re-discoveries of the Kovalevskaya exponents is given together with the modern use of Kovalevskaya exponents in integrability theory and nonlinear dynamics.
Поступила в редакцию: 14.09.1999
Образец цитирования:
A. Goriely, “A Brief History of Kovalevskaya Exponents and Modern Developments”, Regul. Chaotic Dyn., 5:1 (2000), 3–15
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd858 https://www.mathnet.ru/rus/rcd/v5/i1/p3
|
|