|
Эта публикация цитируется в 28 научных статьях (всего в 29 статьях)
On the 70th birthday of J.Moser
Higher dimensional continued fractions
V. I. Arnold Steklov Mathematical Institute,
ul. Gublcina 8, Moscow 117966, Russia
Аннотация:
The higher-dimensional analogue of a continuous fraction is the polyhedral surface, bounding the convex hull of the semigroup of the integer points in a simplicial cone of the euclidian space. The article describes some conjectures and theorems, extending to such higher-dimensional continouos fraction the Lagrange theorem on quadraticirrationals and the Gauss–Kuzmin statistics.
Поступила в редакцию: 03.09.1998
Образец цитирования:
V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd944 https://www.mathnet.ru/rus/rcd/v3/i3/p10
|
|