|
Сибирские электронные математические известия, 2023, том 20, выпуск 1, страницы 17–24 DOI: https://doi.org/10.33048/semi.2023.20.002
(Mi semr1566)
|
|
|
|
Геометрия и топология
Lagrange spaces with changed Z. Shen square metric
Kumar Tripathi Brijesha, S. B. Chandaka, V. K. Chaubeyb a Department of Mathematics, L D College of Engineering Ahmedabad, 380015, Gujarat, India
b Department of Applied Sciences,
Buddha Institute of Technology, Sector-7, GIDA, Gorakhpur, (U.P.)
273209, Gorakhpur, India
DOI:
https://doi.org/10.33048/semi.2023.20.002
Аннотация:
The purpose of present paper to study Lagrange space due to changed Z. Shen square metric $L^{*}=\frac{(L+\beta)^{2}}{L}$ and obtained fundamental tensor fields for these space. Further, we studied about the variational problem with fixed endpoints for the Lagrange spaces due to above change.
Ключевые слова:
Lagrange space, Z. Shen square metric, Euler-Lagrange equation.
Поступила 24 мая 2022 г., опубликована 23 января 2023 г.
Образец цитирования:
Kumar Tripathi Brijesh, S. B. Chandak, V. K. Chaubey, “Lagrange spaces with changed Z. Shen square metric”, Сиб. электрон. матем. изв., 20:1 (2023), 17–24
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1566 https://www.mathnet.ru/rus/semr/v20/i1/p17
|
|