|
Сибирские электронные математические известия, 2023, том 20, выпуск 1, страницы 183–206 DOI: https://doi.org/10.33048/semi.2023.20.016
(Mi semr1580)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Вещественный, комплексный и и функциональный анализ
Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time
A. G. Kachurovskiia, I. V. Podvigina, V. E. Todikovab a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State Technical University, pr. K. Marksa, 20 630073, Novosibirsk, Russia
DOI:
https://doi.org/10.33048/semi.2023.20.016
Аннотация:
Power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in von Neumann's ergodic theorem with continuous time is considered. All possible exponents of the considered power-law convergence are found; for each of these exponents, spectral criteria for such convergence are given and a complete description of all such subspaces is obtained. Uniform convergence over the entire space takes place only in trivial cases, which explains the interest in the uniform convergence just on subspaces.
In addition, along the way, the old convergence rate estimates in the von Neumann ergodic theorem for (semi)flows are generalized and refined.
Ключевые слова:
von Neumann's ergodic theorem, rates of convergence in ergodic theorems, power-law uniform convergence.
Поступила 3 июля 2022 г., опубликована 1 марта 2023 г.
Образец цитирования:
A. G. Kachurovskii, I. V. Podvigin, V. E. Todikov, “Uniform convergence on subspaces in von Neumann's ergodic theorem with continuous time”, Сиб. электрон. матем. изв., 20:1 (2023), 183–206
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1580 https://www.mathnet.ru/rus/semr/v20/i1/p183
|
|