|
Сибирские электронные математические известия, 2024, том 21, выпуск 2, страницы 914–926 DOI: https://doi.org/10.33048/semi.2024.21.060
(Mi semr1723)
|
|
|
|
Теория вероятностей и математическая статистика
Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph
A. V. Logachovab, A. A. Mogulskiia, A. A. Yambartsevc a Lab. of Probability Theory and Math. Statistics, Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Dep. of Computer Science in Economics, Novosibirsk State Technical University pr. K. Marksa, 20, 630073, Novosibirsk, Russia
c Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, CEP o5508-090, São Paulo, SP, Brazil
DOI:
https://doi.org/10.33048/semi.2024.21.060
Аннотация:
We obtain a bound for the convergence rate in the central limit theorem for the number of triangles in a heterogeneous Erdős-Rényi graphs. Our approach is reminiscent of Hoeffding decomposition (a common technique in the theory of U-statistics). We show that the centered and normalized number of triangles asymptotically behaves as the normalized sum of centered independent random variables when the number of vertices increases. The proposed method is simple and intuitive.
Ключевые слова:
Erdős-Rényi random graphs, central limit theorem, large deviations principle.
Поступила 7 марта 2024 г., опубликована 1 ноября 2024 г.
Образец цитирования:
A. V. Logachov, A. A. Mogulskii, A. A. Yambartsev, “Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph”, Сиб. электрон. матем. изв., 21:2 (2024), 914–926
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1723 https://www.mathnet.ru/rus/semr/v21/i2/p914
|
| Статистика просмотров: |
| Страница аннотации: | 81 | | PDF полного текста: | 30 | | Список литературы: | 7 |
|